
net.html[13/01/2015 13:09:13]

 Creating Commercial Components

 (Microsoft® COM and Microsoft® .NET Framework)
•

Technical White Paper

View Contents

Date: December 14, 2001

Authors: Andrew Pharoah, ComponentSource
 Chris Brooke, ComponentSource

 Email: publishers@componentsource.com

US Headquarters European Headquarters
 ComponentSource
 3391 Town Point Drive,
Suite 350,
 Kennesaw, GA 30144-7079
 USA

Tel: (770) 250 6100
Fax: (770) 250 6199
International: +1 (770) 250 6100

 ComponentSource
 30 Greyfriars Road,
 Reading,
 Berkshire RG1 1PE
 United Kingdom

Tel: 0118 958 1111
Fax: 0118 958 1111
International: +44 118 958 1111

mailto:publishers@componentsource.com

net.html[13/01/2015 13:09:13]

 Copyright © 1996-2003 ComponentSource

Contents
 Introduction

 Commercial Overview

Component Overview

Identifying A Component Candidate
Analyze Application Functionality
Component Reusability
Expert Functionality

Component Architectures
Client-Side Components
Server-Side Components
Server-Side User Interface Components
Exceptions

Component Types
Visual Components
Non-Visual Components

Component Languages
Visual Basic.NET
Visual C++.NET
C# (C Sharp)
J# (J Sharp)
MSIL
Other Languages

Designing Commercial .NET Components

Component Characteristics
Code and Metadata
Inheritance
Strong Naming
Error Handling
Interoperability with Threading Models

Design Considerations
Identify Component Scope
Choose Architecture

Documenting Commercial .NET Components

Documentation Benefits
 Reduction In Pre/Post Sales Support
The Confidence Factor

Typical Documentation
Online Documentation
Demonstrations
Evaluations
Sample Code
Readme Files
Pre-requisites
Compatibility

Deploying Commercial .NET Components

Component Installation
Writing A Script
Protection
Component Verification

Component Testing

Component Licensing
The Common Licensing Problem
C-LIC - The Common Licensing Solution

Conclusion

net.html[13/01/2015 13:09:13]

Prototype Interface

Introduction
This white paper has been constructed to help component authors develop and enhance professional software
 components for delivery on the 'open market'. Information covered in the document is based on our knowledge
 and expertise of those component authors who successfully have established themselves in the component
 marketplace. The content is aimed at developers who wish to create components based on the Microsoft .NET
 Framework. In the following chapter we discuss the business benefits of using components and identify the
 functionality suitable for component development. Following this we detail the component architectures and the
 languages in which components can be written.

Commercial Overview
 The market for Software Components is expected to grow to around $4.4 billion by 2002, $1.0 billion from
 products and $3.4 billion from related services. (Source: PricewaterhouseCoopers)

 Software applications are now created as a collection of software components. For example: Microsoft ® Office
 2000. Increasingly application developers are employing component-based software development techniques,
 which enable them to reduce their time to market and improve their software quality. Software authors who are
 experts in a specific horizontal or vertical market sector are now "componentizing" their applications to meet the
 increasing demand for sophisticated business components. As such this represents a huge opportunity for you
 to unlock hidden revenues from years of research and development.

Why is buying a software component a good idea?

 Everybody, software developers included, admit that they do something, (write a program or subroutine), better
 second time around. This is the essence of a "component", built and continuously improved by an expert or
 organization and encapsulating business logic or technical functionality. By buying a component a developer
 can add functionality to their application without sacrificing quality. Indeed quality should improve, as the
 component will have gone through several development iterations and include feedback from 1,000's of users.

What type of components will people buy?

 Initially software components were used to provide technical functionality, such as SMTP for email or enhanced
 user interfaces. Developers are now requesting sophisticated components that solve real business issues from
 component authors.

 What is helping make this happen now?

 The Microsoft .NET Framework is an integrated and web-enabled platform that allows component authors to
 focus on creating reusable components rather than spending time on building complex proprietary "application
 framework environments" that "lock-in" users. This architecture from Microsoft provides "services for
 components" and give the user a scaleable and secure deployment environment for his/her component based
 application. Plus - components can now be easily built using readily available development languages like
 Microsoft Visual Basic.NET ®, Visual C++.NET, C#, or J#.

 To find out how to create components from your existing applications or as part of your next software
 development project - read the remainder of this white paper. Many varied technical topics are covered and this
 paper gives a "best practice" guide to commercial component creation in a Microsoft .NET environment.

net.html[13/01/2015 13:09:13]

Component Overview
Identifying A Component Candidate
How do I identify a component candidate? - Understanding how a component works and how
 functionality differs from applications is important when identifying a suitable component
 candidate. In this section we investigate existing applications for potential functionality, consider
 component reusability and finally discuss the importance of business knowledge and how this
 applies to the components you write.

 a) Analyze Application Functionality
 Developers should look at the functions encapsulated in their own applications and others to
 assess the commercial viability of componentizing particular functions. One of the main
 characteristics of a component is that the business logic is separate from the data. However, this
 does not apply to single parameter data that is passed to a methods interface. If you are creating
 a component it's important to manipulate data in arbitrary collections or streams. Typical
 examples include Visual Basic property bags and XML documents. (Read the 'White Paper' by
 Jim Parsons on separating data from programming and business logic) A typical example would
 be Microsoft's ADO component. This allows application developers to specify any ODBC
 compliant data source such as SQL server or Oracle, connect to the data source and then
 manipulate the data through an arbitrary recordset. The component was never programmed to
 know what data source to connect to or the type of data inside the recordset. This characteristic
 ensures the component is viable for any developer wishing to handle data located in an ODBC
 compliant database.

b) Component Reusability
 An important factor worth considering is a product's commercial viability. Market demand
 determines whether a component is commercially viable or should be used only within your own
 organization. Typical examples include components that are directly linked to hardware such as
 monitoring components for alarm systems. Unless the components can be sold separately from
 the hardware the ability to sell the product online is greatly reduced.

 Components that can be integrated without any consultation will succeed in what's known as the
 'Open Market'. This market allows components to be distributed without any consultation or
 tailoring service. All information regarding the product is supplied in online documentation such
 as demonstrations, evaluations, help files and sample code.

 For more information on the open market browse to:
 http://www.componentsource.com/services/cbdiopen_market.asp

c) Expert Functionality
 Expertise and knowledge are the two areas you should focus on when writing a software
 component. If you are developing a component from scratch then consider the components
 already on the market and assess whether you could offer a different or superior solution. Where
 possible write components that are related to your core business area. It's likely that these
 functions will be more valuable than peripheral functionality designed to provide a basic solution.
 For example, if your core business provides insurance underwriting services then concentrate on
 these core functions first as opposed to peripheral components such as a basic user interface
 components for data presentation in a grid or as a chart of graph.

Component Architectures
 Where are components installed? - Components, unlike applications are deployed in either a
 client or server environment. Where they are deployed can depend on the functionality the
 component is intended to provide. Historically, GUI or visual components were designed to run
 on the client and were of little use in an environment where servers run without screens.
 However, the .NET Framework and its related services introduces a new paradigm: Server-side
 User Interface components. We discuss these types of components more in depth in the
 following section. For the purposes of this discussion, though, the important thing to remember is

http://www.componentsource.com/services/cbdiopen_market.asp

net.html[13/01/2015 13:09:13]

 that components without a visual interface can run on either the client OR server machines,
 although this may be dependent on the usage of the component and other aspects defined
 below.

 a) Client-Side Components
Client-side components can be implemented in a variety of ways depending on the functionality
 required. Their overall characteristic is that all logic is encapsulated and run on the client as
 opposed to a server that may serve many clients. Another factor unique to client-side
 components is licensing. Depending on complexity, client-side components may be restricted
 with user run-time licenses. Due to the nature of a client component it is possible that unique
 licenses are required per client machine. Client-side components can be implemented in the form
 of Presentation, Technical and Business components. Examples of each are detailed in the topic
 'Component Types'.

 b) Server-Side Components
Server-side components are relatively new to the component market. Benefits enable the
 developer to provide solutions that run on a per server basis. These components serve many
 clients simultaneously without significant performance loss. Server-side components can also be
 upgraded efficiently removing the complexities of updating potentially thousands of desktop
 machines. Component logic is often run on powerful servers as opposed to a desktop machine.
 This makes the server-side component an excellent candidate for systems that require efficient
 throughput and performance.

c) Server-Side User Interface Components
The .NET Framework allows developers to build server-side user interface components. These
 components can be designed to run on either a web server via Web Forms, or on an
 application server via Windows Forms Controls. In both cases the component itself resides on
 the server, enabling it to take advantage of increased resources, scalability, and fault tolerance.
 Whether you choose to develop Win32 distributed applications or Active Server Pages.NET web
 applications, or both, the .NET Framework allows you to integrate a rich user interface via server-
side components.

d) Exceptions
Where possible you should design components in either a client or server architecture. However,
 there are a few components that are exceptions to the two definitions above. Typical examples
 include components that have a user interface that run in an client environment and are tightly
 coupled to components that run in a server environment e.g. stock/trading systems. These
 architectures exist for security reasons only i.e. the server component will only communicate with
 a specific client component and the client component will only communicate to a specific server
 component.

Component Types
What types of component are there? - Two main types of component exist - visual and non-visual
 components. Included in the visual components category are server-side UI components and
 client-side components. Both visual and non-visual components can encapsulate either technical
 or business knowledge. The differences between the two are dependent on functionality. For
 example if the component provides only a benefit to the developer e.g. a TCP/IP communication
 library then the component is categorized as technical. Business components provide a benefit to
 the developer and end-user by encapsulating business knowledge. Typical examples include
 address formatting and credit card validation components. Both visual and non-visual
 components have their benefits and in the following topics we will look at different examples of
 both in a client and server based environment.

 a) Visual Components

 .NET Framework Visual Components is the architecture from Microsoft that allows developers
 to build server-side user interface components. Utilizing this technology, you are able to create a

net.html[13/01/2015 13:09:13]

 complete user interface on either a web page or within a Windows application. Let's compare a
 server-side UI component to a standard client side component:

 Client-Side Example - Consider a button bar. Each button has properties - such
 as color, image, 3D/Not 3D, etc., methods and events - such as a method to switch
 from 3D to Not3D in the case of a Button_Click event. Buttons can even be
 combined to form a ToolBar. Since the component resides on the client, it responds
 quickly to create a rich user interface. However, since they must be installed on
 each client machine, developing applications that use these components means
 taking into consideration the size, footprint, and memory and system requirements
 of the component.

Server-Side Example - A .NET Framework server-side UI component will be able
 to create the same button bar used above, but the component resides on the
 server. It can still respond to click events and it can still set component properties.
 The benefits inherent to this implementation are significant. First, the client
 application needs only reference the component on the server. This eliminates the
 need to install a .DLL on every client machine. Second, by offload the component
 to the server, the requirements for client machines are less stringent. The server is
 built to be robust with sufficient memory and processor speed to support multiple
 clients. Additionally, this server-side implementation can be deployed in a
 distributed application - via Win Forms, or as part of an Internet application via Web
 Forms and Active Server Pages.NET.

 b) Non-Visual Components
 Non-visual components do not provide a pre-designed presentation interface to the user. These
 types of .NET components are known as .NET Components or Classes and only contain
 functionality exposed to the developer through the programming interface. Unlike visual
 components this interface is not visible through a property page such or the developer toolbox.
 Non-visual components are adaptable and can be run in either client or server environments.
 This allows the functionality to be plugged into any n-tier architecture providing the application
 developer with a universal solution. Non-visual components do not appear graphically in a
 component toolbox. Non-visual components designed to run in a server environment allow many
 clients to access functionality simultaneously without loss in performance. Typical examples
 include online housekeeping functions that require the dedicated processing power of a server.

Component Languages
 What language do I use? - Practically any. Many development environments support the .NET
 Framework. There are two classes of languages: .NET Consumers and .NET Extenders. .NET
 Consumers are able to be deployed on the .NET Platform. They are required to compile to
 Microsoft Intermediate Language (MSIL is described in depth in the next section). There are
 many languages that have been updated to be .NET Consumers including: COBOL, APL,
 Pascal, RPG, FORTRAN, and more. .NET Extenders are able to extend the .NET Framework.
 Currently, the only development languages that are classified as .NET Extenders are the Visual
 Studio Suite of programming languages.

a) Visual Basic.NET
 Microsoft Visual Basic is the most widely used language for creating software components.
 Visual Basic.NET will likely be just as popular for creating commercial .NET components. This
 environment provides all the functionality required for developing and compiling a .NET
 Assembly. Visual Basic.NET is a language that is easy to use and excellent for rapid
 development. Additionally, since all .NET languages compile to MSIL (see below) and offer
 comparable execution speed and capabilities, VB.NET emerges as a first-class player in the
 .NET arena.

b) Visual C++.NET
 Microsoft Visual C++.NET offers greater power and speed of execution over Visual Basic.NET
 through the use of unmanaged code. Although Visual C++.NET leverages managed code, the
 developer has the power to choose not to use it in certain circumstances. If the developer

net.html[13/01/2015 13:09:13]

 chooses to use unmanaged code, he faces the same restrictions as he has always faced in C++,
 such as security, resource allocation, garbage collection, etc. Security is the most significant
 consideration. Unmanaged code won t be able to run on many web servers, ASP Service
 Providers, etc. However, these considerations may be an equitable trade-off for the added speed
 or flexibility depending upon the requirements of the project. Unless a compelling reason can be
 found to use unmanaged code, Visual C++.NET developers should use managed code, thus
 reaping all of the benefits of the .NET Framework.

 c) C# (C Sharp)
 Microsoft C# is a new development language introduced as part of the .NET Framework. It
 combines the low-level functionality of Visual C++ with the productivity of higher-level languages
 like Visual Basic, and all of the advantages of using managed code. C# is designed to allow
 developers to build robust, object-oriented applications with fewer lines of code. It was designed
 from the ground up to integrate completely with new web standards such as HTML, XML, and
 SOAP. It offers a clear advantage over existing development tools that were introduced before
 the Internet was widely accepted and building "Internet-enabled" applications that leverage this
 technology became such a major consideration for developers.

 d) J# (J Sharp)
 Microsoft J# is a new development language that allows Java developers to build components
 and applications for the .NET Framework. It integrates Java syntax directly into the Visual
 Studio.NET development environment, and continues to support Visual J++ functionality such as
 JavaCOM and JDirect. However, J# is not interchangeable with other Java IDEs. Components
 and applications written in J# will only run in the Microsoft .NET Framework. They will not run on
 a Java Virtual Machine. However, it does give Java developers a straightforward process with
 which to port existing Java/Visual J++ components to the .NET Framework, as well as the means
 to create new .NET components and applications without requiring them to learn a new
 development language.

 e) MSIL
 All .NET Consumers and Extenders initially compile to Microsoft Intermediate Language. It is the
 language spoken by the .NET Common Language Runtime (CLR). This offers the advantage
 of potentially expanding .NET to other platforms. Indeed, a CLR for Unix is already under
 development. At Runtime, MSIL is compiled to native code using Just In Time Compilers (JITers).
 These JITers can be configured for a combination of speed and portability. Depending upon the
 JIT settings, the MSIL code is compiled to native code sometime between install-time and
 runtime.

 f) Other Languages
 As mentioned at the beginning of this section, virtually any language can be modified to act as a
 .NET Consumer. Compilers are already available for COBOL, APL, RPG, FORTRAN, and more.
 A distinct advantage to the .NET Common Language Runtime is that developers no longer need
 to be tied to a single IDE or Platform.

 Designing Commercial .NET Components
 Component Characteristics
Do components technically differ from applications? - There are various characteristics that
 differentiate components from applications. The following topics explore the component interface,
 the Windows registry, component error handling, threading models and the safety aspects of
 Web-based components. Developing components is not dissimilar from developing applications.
 An understanding of the fundamental differences will help you convert functionality in stand-alone
 applications and build new components from scratch.

a) Code and Metadata
 The Microsoft .NET Framework uses metadata to describe a component s entry points. When a

net.html[13/01/2015 13:09:13]

 .NET Assembly is compiled to MSIL, the metadata is stored with the component s code inside
 the .DLL or executable. It describes the component in much the same way as interfaces
 describe COM components. It is stored in a compact binary format, but can be converted to/from
 XML Schema or COM Libraries. The functions contained in an the components can be methods,
 property get or put functions, or even events, as described below.

 Methods - Methods are similar to functions found in traditional applications. They
 contain code that can be utilized by the calling application. Components
 encapsulate methods that are public or private. This allows the component author
 to provide developers with entry methods only, removing any confusion as to which
 methods can be used.

Properties - Properties are used to persist data. This persistence can last for only
 the life of the object, or it can be persisted to a database. Properties are generally
 represented as two methods: one to get a property value and one to set, or put, the
 value (or perhaps just a get method in the case of a read only property). Therefore
 you could, for example, create a property called Name on the interface, which
 would result in the creation of get and put functions. However, from a developer s
 standpoint they will simply use the property by name in most cases and be
 unaware of the underlying implementation details. Once a component is
 instantiated its properties are persisted until the instance is terminated by the
 parent application. This allows the properties to be changed either by the parent
 application or internally by methods or events.

Events - Events are messages sent by an object to signify that an action has
 occurred. They can be triggered by user interaction (such as a mouse click) or in
 response to program logic, such as providing status information on a method s
 progress. In most development tools, the handling of events is automatic. .NET
 uses three elements to provide event functionality: a class providing event data
 called EventEventArgs; an event delegate called EventEventHandler, which
 holds a reference to a method; and a class that raises the event which must
 provide an event declaration and a method called OnEvent to raise the event.

.NET components can consist of multiple interfaces, and interfaces can also be inherited from one
 another.

 b) Inheritance
 The .NET Framework offers true inheritance, whereby a component is defined to inherit the
 definitions of one class. If the characteristics of the parent change, the subclass that inherits from
 it will also be changed. For example, if you add a property IsEncrypted to a File component,
 any subclass based on that component will have an IsEncrypted property. Classes can be
 created that are incomplete by themselves and are solely for the purpose of being inherited by
 others. These are called abstract classes. To give further extensibility and customizability to your
 components, interfaces can be implemented. Interfaces do not support implementation
 inheritance, and are best used in classes that already have established base classes.

c) Strong Naming
 When a .NET Assembly (component) is created, it consists of a strong name. Strong names are
 created by using a Public/Private Key encryption. The name is generated using your private key
 and the public key is published with the component. This strong name is how the component is
 distinguished from other components. The use of strong naming in assemblies allows for multiple
 versions of the same component to exist side-by-side simultaneously. It also eliminates the need
 to create Globally Unique Identifiers (GUIDs), and to register those GUIDs, along with component
 information, in the system registry. Because .NET components are self-describing and do not
 need to be registered, they can be deployed by simply copying the assemblies to the target
 machine (known as XCopy Deployment).

d) Error Handling
 The .NET Framework provides Structured Exception handling. Standard Exceptions are provided

net.html[13/01/2015 13:09:13]

 by the runtime and should be used in favor of creating new ones. Handling errors in a component
 is not the same as handling application errors. Firstly, you need to consider that any error not
 handled in a component will be raised to the client that called the method. For that reason, you
 must ensure that the information the client receives is meaningful. A client interface should be
 totally unaware that a component may be running a process. Therefore any error that occurs
 should be handled by the client and interpreted in such a way that any error message displayed
 is generated by the client and is in context with the process that has failed. Below are the main
 techniques for handling errors in a software component.

 Handling Errors Internally - Handling errors within a component is no different to
 handling errors in a standard application. If a method unexpectedly generates an
 error then unless an error handling routine is included, the calling application will
 crash as well as the component. To avoid this situation, intercept the error, assess
 its severity and take corrective action, either by resuming to a specific line of code
 or returning an exception to the calling function.

Passing Errors Back to the Client - To return an error back to the calling client
 you must raise an error. You can raise an error by invoking the raise (or equivalent)
 method in the error object of your chosen language. Raising an error will allow you
 to return a number and error description back to the client. Alternatively ensure that
 you either set a public error property or error parameter on the methods interface
 before exiting the method. This will allow the client to interrogate the error property
 or parameter and take appropriate action.

Raising Errors from Error Handlers - The majority of methods and properties you
 write will contain error handler routines. Where an error handler receives an
 unexpected error then returning a generic 'unexpected error' description will not
 help the client find a solution. A good practice is to return the methods name that
 failed and the parameters that were passed to it. This information can then be
 passed back to the component author for investigation.

Handling Errors from Another Component - If your component references a third
 party component then you must handle all errors (known or unknown) that the
 secondary component may generate. Developers using your component may have
 no knowledge of the dependencies your component references. Because of this,
 you must not raise these errors to your client application.

e) Interoperability with Threading Models
 Designing .NET components for compatibility with existing COM components is an important
 consideration. With the advent of more server-based components, the need to compile a
 component with a suitable threading standard becomes increasingly important under a multi-user
 environment. The following list describes the threading models used by COM components.

 Single - The entire COM server runs in a single thread. This makes programming
 easy because data does not need to be protected from synchronous access, but it
 can hamper performance, since every method call is serialized into the COM
 server. When you create a single-threaded component run in a multi-user
 environment (or single user environment where multiple threads will be accessing
 the component), the performance at the client end can be extremely slow. On a
 client the user must wait until the client (or thread) in front has terminated its
 component connection. In a multi-user environment single threaded components
 are created per user. Because the server is constantly creating multiple instances
 all carried in memory the performance of the server can eventually grind to a halt,
 as all the available memory resources are used.

 Apartment, also known as Single Threaded Apartment (STA) - Each COM object
 executes within the context of its own thread, and multiple instances of the same
 type of COM object can execute within separate apartments. Because of this, any
 data that is shared between object instances (such as global variables) must be
 protected by thread synchronization objects when appropriate.

net.html[13/01/2015 13:09:13]

Free, also known as Multithreaded Apartment (MTA) - A client can call a method of
 an object on any thread within that apartment at any time. This means that the
 COM object must protect even its own instance data from simultaneous access by
 multiple threads.

 Both - A hybrid of Apartment and Free that provides the calling efficiency of the
 Free threading model but the callback efficiency of Apartment. This is done by
 ensuring that callbacks from the server to the client are serialized on a single
 thread. If a component marked as both (or MTA) is created from a STA, it is
 created in a new apartment with a new thread. If created from an MTA, it joins the
 MTA with its own thread. Creating a component as 'Both' requires extra work on
 the part of the developer to code in his own synchronization.

The .NET Framework does not use Apartments. All managed objects must use shared resources
 in a thread-safe manner themselves. However, .NET does have the ability to interoperate with
 existing COM objects that use Apartment Model Threading. A managed thread can create and
 enter either an STA or an MTA. You control the type of apartment created by setting the
 ApartmentState property of the thread.

 Design Considerations
How do I develop a software component? - Before writing a component you should analyze the
 functionality and architecture first. In this section we discuss components functional boundaries,
 assess where a component will physically run and how to implement an extensible interface.
 Considering these elements will prevent the inclusion of unnecessary functions and provide a
 focused solution for developers.

a) Identify Component Scope
 It is important when designing a component to identify the functionality that should be included
 and the functionality that is best incorporated into another component. A component should allow
 a developer to integrate a precise solution as opposed to one that provides features over and
 above a basic requirement. For example, designing a business component that provides
 addressing services could include various functions such as address deduplication, post coding
 and address formatting. In this example the three functions are mutually exclusive and should be
 implemented separately.

 However, if the component was an address deduplication component that incorporated extended
 functionality e.g. off-line batch deduplication then this functionality should be included. It is
 possible to create one component that can be sold at three different levels. By using the
 ComponentSource licensing technology (C-LIC), it is possible to block extended functionality.
 This allows authors to publish one component but sell a separate standard, professional and
 enterprise edition.

 Defining component scope will help ensure a component does not become monolithic and mimic
 an application without an interface. Unbundling functionality into separate components will
 prevent the component from becoming over complex and difficult to maintain. The advent of
 online purchasing and the removal of packaging and shipping costs has meant there no longer is
 a need to bundle disparate functionality into one component or to market several components in
 one suite. Removal of this traditional cost implication will allow authors to publish highly focussed
 discrete components and provide customers a wider choice.

b) Choose Architecture
 Choosing architecture will depend on the functionality the component will provide. As discussed
 earlier in the chapter 'Component Overview' client components are often visual in some respect
 such as grids, charting and toolbar components. However, non-visual components may fall into
 this category if the functionality is 'lightweight' and does not severely impact the processor, typical
 examples include file encryption and communication components. If the component functionality
 can be used in a multi-user environment then consider developing a scaleable server based
 component.

net.html[13/01/2015 13:09:13]

 Installing components in a server environment is less time consuming than having to install a
 component on several client machines. The improved performance and upgradeability benefit
 that server components offer is reflected in the price and provides component authors with an
 opportunity to generate revenues based on a server architecture. Server based components will
 provide the backbone to future Application Service Providers (ASP) and consequently developing
 server components now, will position you for the future growth in this market. Components can
 also be created as Web Services. Web Services can be used by a number of clients. These
 clients can be web-based applications or even other Web Services.

c) Prototype Interface
 Prototyping a component interface can be a useful exercise and will help determine the
 complexity of integrating the component into an application. Component integration should be a
 relatively quick process. If the interface has hundreds of public properties, methods and events
 then it's probably too complex and will confuse users and generate support issues. A technique,
 which can help prevent this problem, is to write the help file before implementation. This will help
 you detail a functional specification and pinpoint any areas that could be consolidated or
 improved upon.

 Documenting Commercial .NET Components
 Documentation Benefits

a) Reduction in Pre/Post Sales Support
 Documentation for components sold in the open market is particular important as 'face to face'
 interaction does not take place between author and customer. Providing a comprehensive set of
 documentation will ensure that pre/post sales support is kept to a minimum. Providing pre sales
 documentation i.e. a thorough component specification prevents many of the refund situations
 common in traditional 'box product' channels.

 Traditional channels sell product by providing marketing information but not the finer detail
 covered in help files and other technical documentation. Providing information such as help files
 and evaluations enables customers to make an 'informed' purchase decision. Documenting and
 publishing known issues such as Frequently Asked Questions (FAQ's) on a regular basis will also
 help reduce technical support after the sale.

 b) The Confidence Factor
 Components sold on the open market are 'Black Box' i.e. the source code is hidden. Because of
 this, trust is extremely important between customer and author. Therefore, provision of detailed
 product information such as evaluations, help files and white papers is essential for building
 confidence in potential customers.

Typical Documentation
What documentation should I provide? - The following section provides a detailed insight into the
 different types of documentation that should be provided when selling components in a
 commercial market. For examples of presenting online documentation in a concise and
 professional style browse our top selling products.

 a) Online Documentation (HTML, HLP and PDF Files)
 HTML is probably the best format of documentation you can provide and can be used for
 displaying information in text and graphical format. Typical examples include product overviews
 with screen shots and/or related diagrams. Customer can view HTML instantly as opposed to
 other document formats that must be downloaded first. A new format recently introduced for
 online help files (CHM) This provides the same search facility as traditional help files but in
 HTML. Writing a help file is relatively easy and can be achieved using help authoring tools. More
 information on these tools can be found on our Web site: Help Authoring Tools.

 Portable Data Files (PDF) are documents that can be viewed on IBM compatible or MAC

http://www.componentsource.com/stats.asp
http://www.componentsource.com/stats.asp
http://www.componentsource.com/Browse.asp?G=3&GroupCode=HELPA&MTC=XXX
http://www.componentsource.com/Browse.asp?G=3&GroupCode=HELPA&MTC=XXX

net.html[13/01/2015 13:09:13]

 platforms. The PDF file enables the creation of technical documentation in a 'book' format.
 Therefore, converting a published manual into an electronic form is probably the most efficient
 way to achieve this. The drawback with PDF files is the requirement of a proprietary viewer that
 must be downloaded first. To write a PDF file you will need to download the Adobe PDF Writer.

b) Demonstrations
 Developing a product demonstration can prove a valuable asset in the documentation you
 provide customers. Exposing component functions will help users understand the benefits of the
 product as a component-based solution. Demonstrations are compiled applications assembled
 with the component. They are not like evaluations that allow developers to use the component in
 a development environment. More information on evaluations is covered in the following topic.

 The objective of a demonstration is to educate users on the functionality incorporated inside the
 component. The interface should demonstrate the main functions in a format that is
 understandable for all customers. Because of this it's important to remove industry jargon and
 acronyms that may confuse users. For data bound components, providing the option of entering
 a DSN (Data Source Name) could be of benefit. This allows users to connect to internal data
 sources in their own organization and apply meaningful data in context with the component.

 Demonstrations often reference dependencies and therefore testing the demonstration on a
 clean machine is extremely important. Clean systems contain freshly installed operating systems
 removing the potential hazards of previously loaded software. If your demonstration references
 any dependencies then you must create an installation kit. Sometimes it's beneficial to include
 the demonstrations within the evaluation kit and thus remove the need to write and maintain two
 separate kits.

 Finally, the quality of a demonstration is directly correlated to the quality of the final retail product.
 Where possible, design your demonstration in-line with an accepted standard e.g. Microsoft
 standards. This helps build a perception of quality and trust with customers - remember
 demonstrations can make or break a sale.

 For more information on Microsoft standards browse to our Resource Library.

c) Evaluations
 Component authors recognize evaluations will help secure a product sale. Once a customer is
 happy with a specification they often trial the component to check the component will actually
 provide the functionality they are looking for. Customers do not doubt component based
 development, but may have concerns with an 'independent' solution, because of this component
 evaluations are essential. Unlike applications, component evaluations add value and play a
 significant role in the pre sales process.

 Writing an evaluation will require consideration into security. Producing a component that
 displays a reminder screen or setting time limits hidden in cryptic keys within the registry are just
 some of the techniques currently used. Setting a 5-10 day trial period for technical components
 and 10-30 days for complex business components is recommended. This gives the customer
 enough time to evaluate the product and make a decision whether to buy.

 An ideal evaluation is the full retail restricted by a security feature detailed above. This prevents
 users having to download the evaluation and retail component separately. ComponentSource
 has developed a license protection facility called C-LIC primarily designed to protect evaluations
 that can be unlocked into full retail products. C-LIC displays a reminder screen requesting the
 user to enter a license key provided when the full retail is purchased. More information on C-LIC
 is covered in the topic 'Deploying .NET Components'.

d) Sample Code
 Sample code is particularly useful when developers need to prototype and assess component
 functionality. A good technique is to provide the sample code used in the component
 demonstration. If possible, this should be provided in a basic, intermediate and advanced
 version. This will allow the developer to grasp how the demonstration was developed and it's
 stages of advancement throughout its development cycle.

http://www.adobe.com/supportservice/custsupport/LIBRARY/acpwin.htm
http://www.adobe.com/supportservice/custsupport/LIBRARY/acpwin.htm
http://www.componentsource.com/Services/ResourceLibrary.asp?Type=Books

net.html[13/01/2015 13:09:13]

 The provision of sample code for environments such as Visual Basic.NET, Visual C++.NET, C#,
 etc will ensure more developers are aware of compatibility with their chosen environment and
 that you are focused on providing the best solution possible. If you only show VB samples, then
 only VB developers will buy the component. In this scenario a C# programmer may believe
 support is not available for Delphi users. The more development environments you support with
 sample code will improve the product's perception and boost sales.

 Sample code usually is the final step that customers evaluate before making a decision whether
 to buy. Therefore its important to maintain a good perception by commenting all code and
 explaining exactly what happens and why. The quality of sample code will directly correlate to the
 quality of your final product. Because of this, professionally written sample code using correct
 naming conventions, coding structures and error handling is essential. If the sample code is well
 structured then it can be reused in actual projects. This makes the whole process of integration
 far less complex and useful for developer's who need to rapidly assemble a component-based
 solution.

 For more information on Microsoft standards browse to our Resources Library.

e) Readme Files
 In this topic we list the various information that a Readme file should contain. Most installation
 scripts provide users with an opportunity to view a Readme file for last minute changes or errata
 information once installation is complete. These files should be written in a universal file format
 i.e. a text (TXT) file or HTML file. This prevents users having to own proprietary applications such
 as Microsoft Word to view the file. The following list provides an insight into the various
 information supplied in component Readme files.

 Products Changes - this section is extremely important and should note all the
 functional changes that have been made in comparison to previous versions and
 any changes to documentation, installation etc.

Bug Fixing - bugs resolved from previous versions should be fully documented.
 Include the component version that contained the bug and a description of what
 has changed. This is particularly important if the component's interface has been
 changed.

System Requirements - Although compatibility information is supplied in our own
 sales documentation its worth reiterating this information in your Readme file. This
 should include information such as operating system for deployment, safety levels,
 threading standards etc.

Service Pack Installation - You should define any services packs that were
 applied when compiling the component. This often is the reason for components
 failing to run in a user's development environment.

Definitions of Component Filenames - Listing the filenames of all components
 (including dependencies) is particularly useful if the user is attempting to identify a
 problem. Although help and dependency files include this information, Readme files
 are often browsed as well.

Detailed Installation Notes - This should include information on how to de-install
 and update previous versions. A troubleshooting section should also be included
 defining solutions to common installation problems.

Notes on Sample Projects - Document any assumptions, known issues etc. If
 possible, describe each of the projects and the functions they expose. In addition to
 this defining a project's complexity i.e. basic, intermediate or advanced can also be
 of help.

Known Issues - You must document all known issues. If possible, also explain why

http://www.componentsource.com/Services/ResourceLibrary.asp?Type=Books
http://www.componentsource.com/Services/ResourceLibrary.asp?Type=Books

net.html[13/01/2015 13:09:13]

 the problem arises. If you do not provide this information then it's likely that
 unnecessary technical support issues will arise. Documenting known issues will
 demonstrate that you care and are focussed on providing a future solution.

f) Pre-requisites
 Pre-requisites provides the customer with details on required software, product size, required
 memory, service packs where appropriate and publicly available DLLs such as Microsoft's
 ActiveX Data Objects (ADO) It is worth including the minimum and recommended size when
 defining memory and hard disk allocation.

 g) Compatibility
 The following topic looks at the compatibility aspects of a software component. Publishing your
 product on www.componentsource.com will require a comprehensive specification of the
 component's compatibility. The product submission form that we ask you to complete covers the
 six areas detailed below.

 Operating System for Deployment - This section covers the different operating
 systems that your component can run on. Since the .NET Common Language
 Runtime may eventually be ported to many Operating Systems, this is important to
 specify from a support perspective. Although theoretically, any .NET component
 will run on any OS that has the CLR, you may not have that OS in your
 organization to assist in troubleshooting should a customer experience technical
 difficulties.

Architecture of Product - The architecture of a component defines the type of
 system the component is compatible with. For instance, the .NET platform may be
 used to create components for differing architectures such as 64-bit or Compaq
 Alpha.

Tool Type - This section defines your software as an application tool, component,
 add-in etc. Again, selecting the tool type will be directly related to the containers the
 component can be used in.

Component Type - Microsoft .NET components fall into four categories: ASP.NET
 Server Control, Web Service, .NET Windows Forms Control, and .NET Component
 or Component Library. This section also allows you to specify if your .NET
 component consists of 100% managed code. Your component will be receiving
 exposure in different filtered catalogs aimed at specific audiences.

Compatible Containers - This section defines each development environment in
 which the component can be used. Mark only those environments that you have
 tested and can support your component in. Completing this section will make you
 eligible for different marketing initiatives and inclusion into catalogs targeted at
 specific audiences such as 'ActiveX' or 'Delphi' users.

General - This section includes options not easily categorized. System
 requirements, languages, etc. are just some of the options that may require
 inclusion.

 Deploying Commercial .NET Components
 In the following chapter we discuss component installation, followed by discussions on testing and component
 licensing.

 Component Installation
 How do I install a component? - Installing a .NET component into a system requires little more

net.html[13/01/2015 13:09:13]

 than copying files into directories on disk. However, .NET components can still benefit from
 integrated installation procedures. Indeed, developers have come to expect a SETUP.EXE
 that installs the application or component onto their system.

a) Writing a Script
 Creating an installation package is one of the final tasks to complete hen creating a component
 for commercial reuse. Packaging a software component is no different to any other software
 application. Nowadays most installations tools come packaged with wizards to help you
 throughout the process of creating a professional setup kit. There are a number of installation
 tools available for creating setup kits. More information on these tools can be found on our Web
 site: Installation Tools.

b) Protection
 In this topic we discuss how to protect a component from illegal and malicious use. Protecting a
 component from illegal use applies to both visual and non-visual components. However,
 protecting a component from malicious use only applies to components intended for download
 into an Internet browser. Malicious use is where a component can be scripted to harm an end-
users system, and because of this certain protection procedures should be applied.

Illegal Use - Nowadays, customers expect one download that runs in evaluation
 mode for a set number of days. Once this evaluation has expired, functionality is
 disabled until a license key is purchased and entered, unlocking the component
 into a full retail version. The best form of license protection is to use a reminder
 screen that appears each time the parent application calls the component. This
 prevents users without a license from releasing an application into a commercial
 environment.

 • Expiration Date - How long would it take to evaluate your product?
 This should be short for non-complex GUI/Technical components 5 to
 10 days and longer for complex Technical/Business components - 30
 days max.

• Reminder Screens - Where the protection is a warning that 'pops
 up' every time an application is run that is built with the evaluation.

• Limited Functionality - This is not popular with customers, as they
 cannot fully evaluate the functionality.

Malicious use - The security context that a .NET component operates under
 depends upon the type of component it is. For example, an ASP.NET Server
 Control/Web Control is accesses over the Internet by the browser. As such, its
 security context is dependent on the browser s security zones settings. For
 Windows Forms Controls and .NET Components or Component Libraries, security
 is verified through a stepped process:

• Load Assembly - The assembly is loaded/downloaded from the
 intranet/internet server.

• Gather Evidence - Evidence is completely extensible. Any object
 can be a piece of evidence. Evidence only impacts granting of
 permission if there is a code group membership condition that cares
 about it.

 • Verify IL - This is an optional step that verifies the MSIL of the
 assembly.

 • Load Policy - The policy determines what the code is permitted to
 do. It is the policy that grants permission to the assembly.

http://www.componentsource.com/Browse.asp?G=3&GroupCode=INST&MTC=XXX%20
http://www.componentsource.com/Browse.asp?G=3&GroupCode=INST&MTC=XXX%20

net.html[13/01/2015 13:09:13]

 • Grant Permission Based on the Policy

 • Execute code

c) Component Verification
 All .NET components are digitally signed using their strong names. This identifies the
 component as coming from you. Digital signatures from a certificate authority (CA) are no longer
 required. Organizations can create their own public/private keys to create the strong names.
 Depending on the security context, once the component is verified, it will have the following
 permissions by default, based on where it is deployed:

 Local Machine - By default, .NET grants the FullTrust PermissionSet. The
 component has full access to all machine capabilities. It can execute unmanaged
 code, and can be installed by simply copying the file.

Local Computer Zone - Full Trust unrestricted.

Intranet Zone - Local Intranet Can read environment variables (limited). Can
 access the User Interface and isolated storage. Web access to the same site/file
 read to the same UNC directory.

 Intranet Zone - Internet Safe access to User interface and isolated storage. Web
 access to the same site.

 Restricted Zone - None - No authorizations. Component can't run.

MS Strong Name (FX) - Full trust - Unrestricted.

Component Testing
 How do I test a component? - Thorough testing is paramount to the success of a component
 being excepted in the open market. All evaluations and sample code should be tested in addition
 to the full retail product for functionality, installation and de-installation. An issue that should be
 approached with care is the dependencies referenced by your component. Most installation tools
 require the selection of the original component's project file. This allows the wizard to analyze all
 references selected at the time the component was compiled. Absence of dependent files
 referenced by other dependent files is probably the most common installation issue. This is why
 testing on a clean machine, on all operating systems and all development environments is
 imperative. If this rigorous testing process is not followed then the likelihood of damaging a
 customers system is high. Therefore, to create a clean machine you must:

 Format Hard Disk - If you only reinstall the operating system then static files that
 do not require registration may have already been installed. Therefore, without
 formatting the disk there is no guarantee that the installation will work on all
 machines.

Install Operating System - Make a note of any service packs applied as this must
 be included in the component's documentation i.e. the Readme file

Install Development Environment - Again, document any service pack
 installations. Always select the standard installation otherwise certain files may be
 missing causing erroneous errors when you test.

Test installation - Although we test the product installation thoroughly we
 recommend you also test the product to your best ability. This will ensure the swift
 progress of the component through our QA system.

Once the above steps are complete you can image the disk allowing you to re-clean your
 environment in minutes. Image applications take a snapshot of your clean system, with operating
 system and development environment installed. This prevents the long cycle of re-installing

net.html[13/01/2015 13:09:13]

 everything before testing can re-commence. A good practice is to allocate a hard disk per
 operating system per development environment. As several disks can be installed in one
 machine, imaging an environment provides an economical and effective solution.

Component Licensing
 How do I license my component? The .NET Framework includes licensing functionality. There
 is a LicenseManager class built into the runtime that supports:

• Free
 • One time fee
 • Per CPU
 • Per Instance
 • Monthly Subscription

 LicenseProviders provide the validation logic for the component. Classes are licensed by
 specifying a LicenseProvider, which developers are able to create themselves. Additional
 licensing can also be provided by an external source. The development of the C-LIC (common
 licensing) component enables authors to integrate a DLL providing a 'Try-Before-You-Buy'
 licensing solution.

a) The Common Licensing Problem
 Components sold on the open market have are typically 'Black Box' architecture. This means that
 all functionality is encapsulated and cannot be adapted by the developer except through the
 public interface. Because of this, providing an evaluation that allows the developer to 'road test' a
 component is important when securing a sale. Nowadays, customers expect one download that
 runs in evaluation mode for a set number of days. Once this evaluation has expired, functionality
 is disabled until a license key is purchased and entered, unlocking the component into a full retail
 version. Often the best form of protection is to use a reminder/nag screen that launches each
 time the calling application runs the component. This prevents users without a license from
 releasing an application into a commercial environment.

b) C-LIC - The Common Licensing Solution
 C-LIC is the ComponentSource license technology used to adapt a full retail product into an
 evaluation. However, please note the current version does not support copy protection. The C-
LIC DLL can be integrated into a majority of languages that support the creation of software
 components. Its method of working is similar to that used in application software. C-LIC was
 developed to enable component authors to create a fully or part functioning evaluation protected
 by a 'nag' screen reminding users that the component is unlicensed. The nag screen allows
 customers to browse to the relevant product page and purchase the license key used to unlock
 the product into the full retail component. The license key is provided by ComponentSource and
 is generated by our own proprietary encryption.

 C-LIC can also protect different levels of functionality. For example if your standard version has
 10 functions and your professional version 20 functions then the purchase of a standard license
 will unlock 10 functions only - the other 10 functions will remain in evaluation mode. Please Note:
 C-LIC does not provide "copy protection".

Conclusion
 Build components and enter the component market now!

 Developer demand for components is currently outstripping supply - as a result an opportunity exists for
 experts to create components and enter the "open market" for components.

 If you have any feedback on this white paper or questions about creating commercial software components
 email us on: publishers@componentsource.com

 The Microsoft .NET Framework is currently in BETA release. As .NET matures and the technology changes,
 this white paper will be updated to reflect relevant information.

mailto:publishers@componentsource.com

net.html[13/01/2015 13:09:13]

Revision History:
First Published: July 9, 2001
 Revised: December 14, 2001 - Revisions: Added information on J# Language

ComponentSource

Copyright © 1996-2003 ComponentSource

	Local Disk
	net.html

